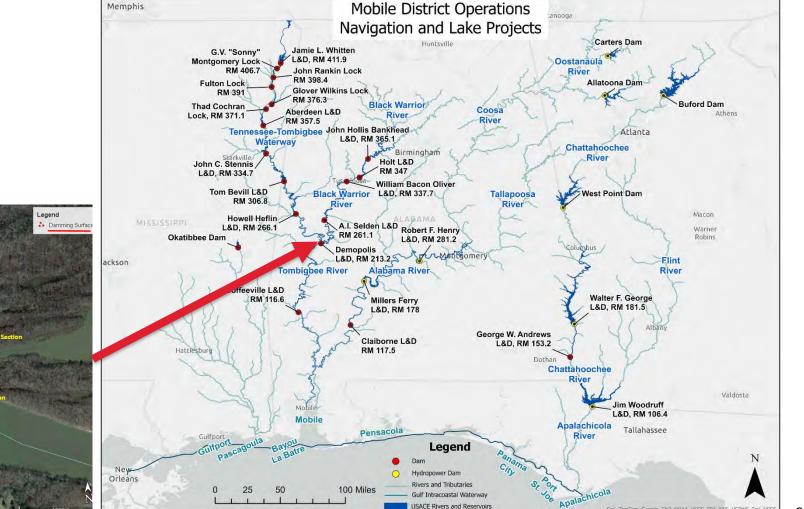
DEMOPOLIS LOCK UPPER MITER SILL FAILURE

RYAN REICH, P.E. Chief, Inland Navigation Section Operations, Mobile District

DEMOPOLIS LOCK

Memphis

Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, NPS, USFWS, Esri, US


2

- Open to Navigation in 1954
- Busiest & Oldest Lock on the System
- Single Chamber: 110' x 600', 40' lift
- Fixed Crest Spillway: 1450' long
- 3-Year Averages

Project Overview

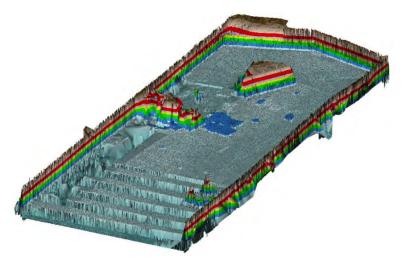
opolis L&C

- Tonnage: 10,542,054
- Commercial Lockages: 1,855
- Recreational Lockages: 446

FAILURE & EMERGENCY RESPONSE

- January 16, 2024
 - Concrete sill under upper miter gate failed
 - Lower gate open and chamber at lower pool
- January 19
 - Lower miter gates closed under flow (assistance from Parker Towing)
- January 20
 - Placed stoplogs (assistance from TVA)

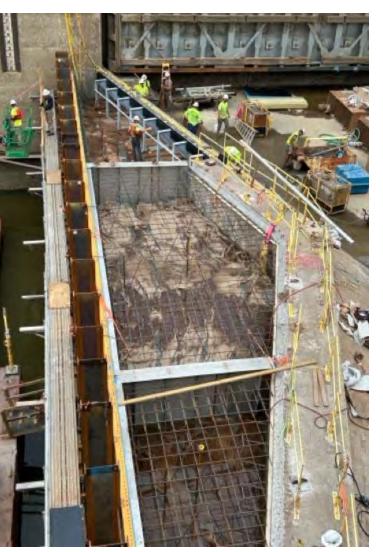
Lower Miter Gate Closure


Breach Through Failed Sill

Placing Stoplogs

REPAIR EFFORTS

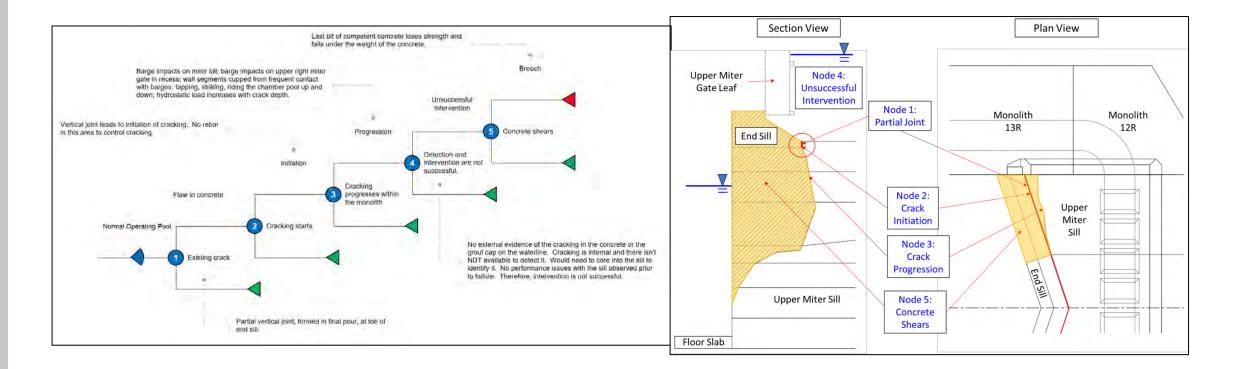
- District Crisis Response Team
 - Subject Matter Experts throughout USACE and Industry
- Debris Removal (assistance from McKinney Salvage)
 - Approximately 1,000 tons total
 - Largest piece 400 tons
- Mass Concrete
 - Wet and dry placements
 - Innovative formwork designs
 - Rebar and reinforcement
 - Steel beam and seal plate


Survey of Damage

Initial Formwork Assembly

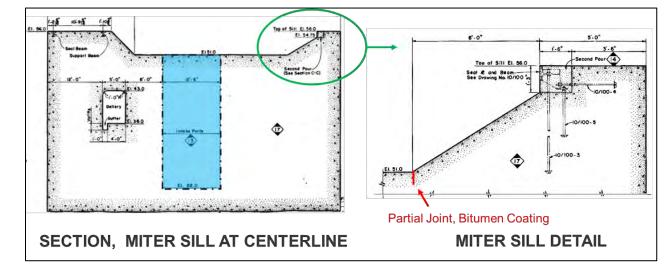
Reinforcement & Embedded Steel

SCHEDULE


Jan 16	Jan 23	Jan 30	Feb 6	Feb 13	Feb 20	Feb 27	Mar 5	Mar 12	Mar 19	Mar 26	Apr 2	Apr 9	Apr 16	Apr 23	Apr 30	May 7	May 14	May 21
	Failu	re & Se	ecuring	Chamb	ber													
			Dr	aft P&S	S and N	Nod Aw	/ard											
				Test	ting & I	Debris I	Remova	al										
	Install Anchors & Formwork									÷								
													Concre	ete Pla	cement			
													(Gate Pr	ep / Mi	sc		
														Retur	n to Se	rvice (5	5/16)	

Lock was returned to service on 4-month anniversary of failure

INCIDENT TEAM


- PDT: SAM EN & OPs, ERDC, and LRP
- Reviewed background information (barge strikes, whirlpool from intake design, etc.)
- Brainstormed failure causes and discussed failure extensively
- Outlined potential failure mode and created event tree to explain and clarify breach

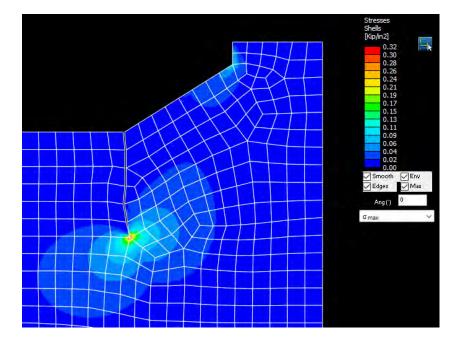
NODE 1 – PARTIAL VERTICAL JOINT

- No issues had been found with the concrete matrix or aggregate
- Partial vertical construction joint at toe located in a high stress area w/o reinforcement

NODE 2 – CRACK INITIATION

- Loads from the vertically framed upper miter gates during each lockage
- Barge Impacts
 - Top of sill when chamber lowered
 - Upper miter gate impacts
 - Adjacent monoliths transfer energy
- Temperature fluctuations
 - Expansion/contraction when chamber at lower pool

Monolith movement upstream of sill



Gate & Sill Strikes

NODE 3 – CRACK PROGRESSION

- Cracking starts at the partial vertical construction joint
- Continuous loading contribute to the propagation
- Tensile stress increased as the crack propagated
 - Eventually surpassed the capacity of the concrete

NODE 4 – UNSUCCESSFUL INTERVENTION

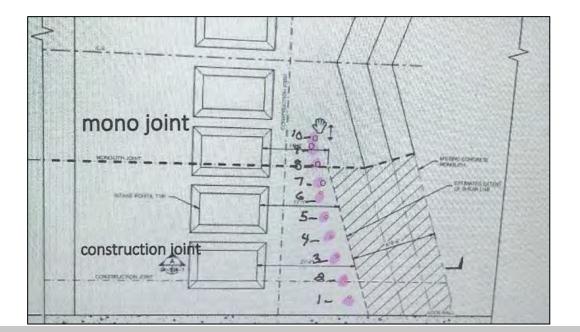
- No signs of cracking
- Crack location is submerged except during lock dewatering
 - No inspection had been emphasized during dewatering

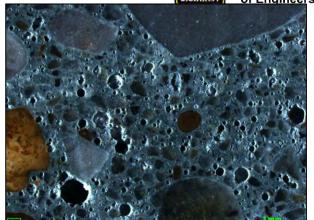
NODE 5 – CONCRETE SHEARS

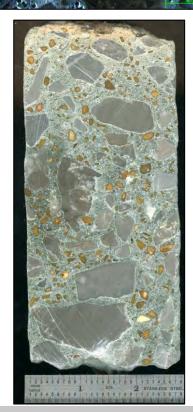
• Stress exceeded capacity, resulting in miter sill failure

VISUAL INSPECTION

- Only gate damage was seal material
- Section of the concrete was a different color with a defined separation area
- The center monolith interface appeared to be very smooth, indicating that there was little adhesion between both the monoliths and the lock wall

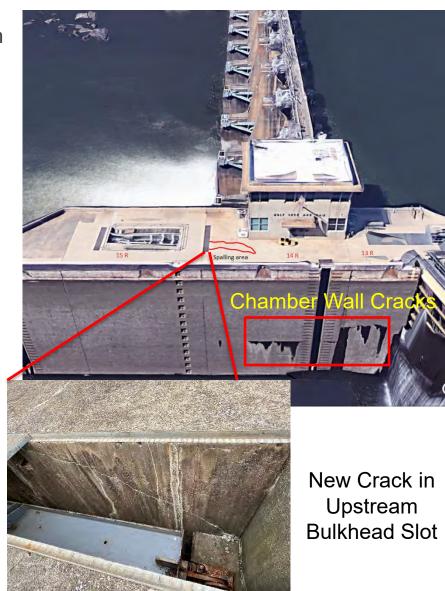



CONCRETE SAMPLING



- 10 core samples were obtained for testing
 - Tested by O&M contractor and ERDC
 - Tested per ASTM C39 and ASTM 42
- Removed debris pieces indicated uniform concrete throughout with no obvious signs of internal deterioration
- Lab testing showed no issues with the matrix or aggregate and no signs of alkaliaggregate reaction (AAR).

FUTURE RECOMMENDATIONS



- USACE needs to identify methods to explore mass concrete for the presence of deep structural cracks
- Evaluate other projects with vertically framed miter gates.
 - Selden Lock (BWT)
 - Jim Woodruff Lock (ACF)
- Keep lower gates in mitered position as much as possible
- During extreme temperatures, keep chamber at upper pool as much as possible.
- Install operational cameras to monitor vessel movements and clearances and improve communications

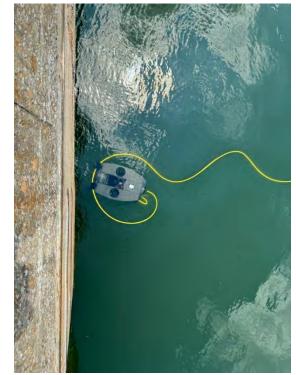
HOLT LOCK – MONOLITH 14R CRACKING

- BWT PMO notified MDO of changes in observed cracks in river wall Monolith 14R
 - Increased water flows through machinery room cracks
 - New cracks and spalling in bulkhead slot
 - Failure of gallery sump pumps

Crack in Machinery Room Floor

HOLT LOCK – MONOLITH 14R CRACKING

- **Emergency Response Team**
 - Site visit to map and analyze cracking
 - Initial assessment extends length of monolith 14R from culvert up to machinery room floor
 - Comprehensive instrumentation & . monitoring program
 - Dye Test to further determine crack locations
- Stability analysis Safety Factor < 1
- Lock closed to navigation on 22 June 2024 ٠
- ROV inspection w/ ERDC 3 July 2024



Dye Observed from Leaks in Lift Lines Along 14R

Joint

Instrumentation at Monolith

ROV in Chamber

QUESTIONS?

NAVIGATION IMPACT & SYSTEM INVESTIGATIONS

- Navigation redirected: GIWW > MS River > TN River
 - Additional ~ 1200 miles
- No indications of severe cracking/issues
 - Dam Safety Inspections, 5-year intervals
 - OCA's, 5-year intervals, "Good" rating
- Aging Infrastructure
 - Demopolis (70),Selden (67), Coffeeville (64)
- No auxiliary chambers at any project
 - Failure can shut down entire system
- Similar Projects
 - Selden no reinforcement in sill, different intake structure
 - Jim Woodruff reinforcement in sill, similar intake structure

- John Hollis Bankhead Holt William Bacon Oliver Lock & Dam Armisted I. Seldon Demopolis Lock & Dam Howell Heflin Lock & Dam
- 6 Howell Heflin Lock & Da 7 Tom Bevill Lock & Dam
- 8 John C. Stennis Lock & Dam
- 9 Aberdeen Lock & Dam
- 10 Thad Cochran Lock

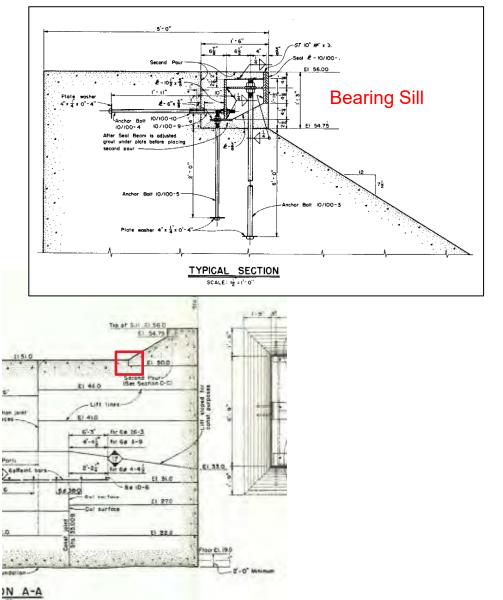
Lock Name

2

3

4

5


- 11 Glover Wilkins Lock
- 12 Fulton Lock
- 13 John Rankin Lock
- 14 G.V. "Sonny" Montgomery Lock
- 15 Jamie Whitten Lock & Dam
- 16 Pickwick Landing Lock
- 17 Kentucky Lock
- 18 Olmsted Locks & Dam
- 19 Inner Harbor Nav Canal
- 20 Coffeeville Lock

MITER SILL DESIGN

- Poured in monoliths consisting of 5ft lifts
- Bearing sill consisted of a steel beam with embedded vertical and horizontal anchors
- Vertical construction joint at the base of the slope at the end sill
- No reinforcement
- Designed to support the water load transmitted by the bottom girder of the vertically framed miter gates.

